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Effectof Contraston HumanSpeedPerception

LELANDS. STONEANDPETERTHOMPSON"

Ames Research Center

Summary descriptionis as follows. Direction informationis retained
usinga placecode with the directionof stimulusmotion

This studyis partof an ongoingcollaborativeresearch givenby which cell is firingmost vigorously within an
effortbetweenthe Life Science andHumanFactors ensembleof neurons.Eachneuronwould actas a detector

Divisions at NASA Ames ResearchCenterto measurethe labeledfora particulardirectionof motionwithin a spatial
accuracyof human motionperceptionin orderto predict mapof all possible directions.This idea is stronglysup-
potential errorsin humanperception/performanceandto ported by the findingof a neatlyorganized arrayof direc-
facilitate the designof display systems thatminimizethe tion columns within the middletemporal cortex(MT), an
effects of such deficits. The study describeshow contrast areaof visual cortex known to be involved in motion per-
manipulationscanproducesignificanterrors in human ception(Albright,Desimone, andGross 1984; Newsome
speedperception.Specifically, when two simultaneously et al. 1985; Newsome, Britten,and Movshon 1989;
presentedparallelgratingsaremoving at thesame speed Salzman, Britten,and Newsome 1990). Since no such spa-
within stationarywindows, the lower-contrastgrating tialorganizationhas ever beenfoundfor speed-tuning,
appearsto move moreslowly. This contrast-inducedmis- one possibility is that speed informationis encodedby the
perceptionof relativespeed is evidentacross a wide range neuronalfiringrate. However,because the firingrateof
of contrasts(2.5 - 50%)anddoes notappearto saturate individualvisualcorticalneuronsis notuniquelyrelated
(e.g., a 50%contrastgratingappearsslower thana 70% to speed(see MaunsellandNewsome 1987), stimulus
contrastgratingmoving at the same speed). The misper- speedwould have to be encodedby the collective firing
ceptionis large:a 70%contrastgratingmust,on average, rateof an ensembleof neurons.The detailsof such a
be slowed by 35% to match a 10% contrastgrating mov- scheme have yet to beworkedout.
ing at 2°/see (N =6). Furthermore, it is largelyindepen-
dentof the absolute contrastlevel andis a quasilinear Physiological studieshave shown that the responseof
functionof log contrastratio.A preliminaryparametric most neuronswithin the visualcortex increases monoton-
study shows that,although spatialfrequencyhas little icallywith increasingstimuluscontrast(e.g., Albrechtand
effect, the relativeorientationof the two gratingsis Hamilton1982;Sclar, Maunsell,andLennie 1990). As
important.Finally, theeffect dependson the temporal long as the neuronshave similarcontrastsensitivities, this
presentationof the stimuli: the effects of contraston per- contrastresponseis nota problemfora direction-coding
ceived speed appearslessened when the stimuli to be scheme thatuses peak response within a populationof
matchedarepresentedsequentially.These dataconstrain neuronsto determinedirection.However,contrastvaria-
bothphysiological models of visual cortex andmodelsof tions presentasignificantobstacle to any speed-coding
humanperformance.We conclude that viewingconditions scheme thatuses neuronal firingrate to encode speed
thateffect contrast,such as fog, may cause significant information.Anysuch scheme mustincludea mechanism
errorsin speedjudgments, to disamb[guatespeed andcontrastinformation.

The basic problemof how to distinguishneuronal
Introduction responses relatedto contrastfromthose relatedto speed

has beena majorconcernof both physiologists androod-
The coding of speedand directionwithin thevisual sys- elers. Variousmechanisms have been proposedto achieve
ternhas long beena focus of researchforvisual neurosci- contrast-independentmeasuresof speed (Watsonand
entists. Impressiveprogress has been madein our Ahumada1985; Adelson andBergen 1986; Heeger 1987;
understandingof directioncoding,but speedcoding GrzywaczandYuille 1990), but an earlystudy of the
remainslargely a mystery.The generally accepted effect of contraston the perceivedspeed of moving grat-

ings showed that perceivedspeed is actuallyaffectedby
*Departmentof Psychology,Universityof York, contrast.Using the methodof adjustmentand magnitude

York,OK. estimation,Thompson (1982) foundthat, at least below



8 Hz, a lower-contrastgratingappearsto move more testwas randomlylocatedin either the upper or lower
slowly thana higher-contrastgratingmoving at thesame position.
speed. Unfortunately,he examinedonly a limitedrangeof

In a secondset of experiments,we madea preliminarycontrasts(at andbelow 17.8%).In apparentconflict with
assessmentof theeffect of relativeorientation/direction

this result,a study of grating-speeddiscrimination
on contrast-inducedspeed-matchingerrors(fig. 6). The..(McKee, Silverman,andNakayama1986) foundno effect
stimuliconsistedof two gratings viewed throughcircu-of randomtrial-by-trialvariations(from5 - 82%).This

second resultsuggestedthat speed is veridicallycoded larlysymmetricGaussianwindows(standarddeviation =
andcleanly disambiguatedfromcontrastvariations.The 0.36°) located 1.3° above andbelow the fixation point. In
issue was revived aftera recentfinding thatthe direction one experiment(fig. 6 anddataused to generatethe pre-

dictions in figs. 7(a) and7(b)), one gratingwas orientedof a moving plaid (the sum of two sinusoidalgratingsof
differentorientation),whose componentshave different horizontallyandthe othervertically. In anotherexperi-

ment (dataused to generatethe predictionsin figs. 7(c)contrastsis biased by up to 20° in the directionof motion
of thehigher-contrastcomponent (Stone, Watson,and and7(d)), one gratingnormalwas oriented60° to the rightof vertical while the otherwas oriented60° to the left. In
Mulligan1990).This bias can be explainedif component both of these experiments,which of the two orientations
speed is misperceivedas predictedby Thompson (1982). appearedin the upperandlowerwindow was randomizedTo reconcile these discrepancies,we reexaminedthe con-
trasteffect on the perceivedspeedof moving gratings (two possible spatialarrangements).Subjectswere pre-
overa wide rangeof contrastsusing a two-alternative sentedwith a single interval,duringwhich both gratings
forced-choice paradigm.Preliminaryreportshave driftedperpendicularto theirorientationin a random

direction:for the orthogonalgratings,either left/rightorappearedelsewhere (Thompson andStone 1990; Stone,
Thompson, andWatson1990). up/down(fourpossible combinationsperspatialarrange-

ment), while for thegratingsoriented120° apart,either
both upwardor bothdownward(two possible combina-

Methods tions per spatial arrangement).The standardpatch(ran-
domly eitherorientationandeitherlocation) movedat
2°/see while the test-patchspeed was determinedby two

Experimental procedures interleavedup-downstaircases.Subjectswere askedto

Subjectswere askedto performtwo types of psycho- ignoreall other factors(contrast,orientation,anddirec-
physical judgments:speed-matchinganddirection- tion)andto respondin a two-alternativeforcedchoice
discrimination.In the first task, we measuredtheper- which patch(topor bottom) moved faster.

ceived relativespeed of two gratingpatches of identical In athirdset of experimentsusinga previously estab-
spatialfrequency,butof differentcontrast.Forcompari- lished protocol(Stone, Watson,andMulligan1990), we
son, in the second task we measuredthe perceived direc- measuredtheeffect of contraston the perceiveddirection
tion of a moving plaidthatconsisted of component grat- of movingplaids consistingof components withdifferent
ingsofidenticalspatialfrequency,butofdifferent contrasts(fig.7).Theplaidconsistedofthesumoftwo
contrast, superimposed gratingsof differentorientationsviewed

Inthe first set of experiments (figs. 1-5), we measuredthe through a single stationarycircularly symmetricGaussian
perceived relativespeed of two simultaneously presented, window (standarddeviation=0.95°) and centeredon the
horizontaldriftinggratings. The stimulusconsistedof two fixationpoint,which was extinguishedduringthe actual
horizontallyelongatedgrating patchescenteredeither 1.3° stimuluspresentation.The componentswere either
above or below the fixationcross at the centerof the orthogonal(normalvectors 45° off vertical) or 120° apart

image. Forthe 70%test-contrastexperiments,the x andy (normalvectors 60° off vertical).Therefore,the differ-
standarddeviationsof the Gaussianwindow were 0.71° encesbetweenthe plaids in this set of experimentsandthe
and0.36°, respectively. Forthe 20%and40%test- grating-pairstimuli in the previousset were the location
contrastexperiments,the x andy standarddcviationswere of thegratingpatches,the absoluteorientationof the grat-
0.95° and0.48°. Subjectswere presentedwitha single ings, whetheror not theywere superimposed,andthesize
stimulusinterval,duringwhich both gratings drifted of thestimuluspatches.Subjectswere presentedwith an
upward.They were askedto ignore contrastandto indi- upward-movingplaid andasked to respondin a two-

alternativeforcedchoice whetherthe plaid appearedtocate in a two-alternativeforced choice, whetherthe topor
bottomgratingappearedto move faster.The standard moveto theright or left of straightup. The actualdirec-

tionof the plaid was determinedby two interleavedgratingmoved at 2°/see. The speed of the testwas
changed within two interleavedup-downstaircases.The up-downstaircases andwas achieved by changing the



speed ratio of the two components while keepingcorn- as the speed match (the test-grating speed that is per-
ponent orientation and plaid-speed constant, ceived equal to that of the standard). The speed match is

In the last experiment, we measured the effect of contrast expressed as a percentage of the standard speed. We
on the perceived relative speed of sequentially presented define the speed error as the percent error of the speed

match compared to the standard speed. The standard devi-
horizontal drifting grating patches (fig. 8). Subjects were ation of the best fitting cumulative Gaussian is a measurepresented with two stimulus intervals. Each interval con-
sisted of two horizontally elongated grating patches of of the precision in the observer's judgments which we
identical contrast centered either 1.3" above or below the plot as speed uncertainty (the ratio of the standard devia-

tion of the psychometric curve to the standard speed isfixation cross at the center of the image. In one interval
divided by _/2because we assume equal uncertainty for(standard), both gratings moved upward at exactly 2*/see.

In the other interval (test), both gratings moved upward at the test and standard gratings). For the plaid-direction dis-
criminationtask, the location of the inflection point (bias)

the same speed determined by two interleaved up-down is the direction of plaid motion that is perceived as
staircases. The test and standard intervals were presented straight upward. This bias, obtained by manipulating thein random order. Subjects were asked to ignore contrast
and to respond in a two-alternative forced choice whether speed ratio, is the exact negative of the direction error
the gratings appeared faster in the first or second interval, perceived when the plaid is moving straight, assuming the

direction error is caused by an underlying inequality in the
All stimulus intervals were 500 milliseconds (ms).The perceived component speeds (Stone, Watson, and
contrast rose with a Gaussian time course reaching full Mulligan 1990).
contrast after 50 ms, stayed at full contrast for 400 ms,
then fell with the same Gaussian time course over the

Stimulus Generationfinal 50 ms.

We used eight observers (six were naive to the experiment We generated the drifting grating patches and plaids on a
purpose) between 16 and 40 years old. Subjects viewed Mitsubishi 19-inch high-resolution monochrome monitor
the screen binocularly through natural pupils from a dis- (model M-6950) using an Adage RDS 3000 image display
tance of 273 cm. The image subtended 5.4* × 5.4* system. The monitor luminance was corrected for its

gamma nonlinearity using a lookup table procedure(20 pixels/cm) and the mean luminance of the image was
75 cd/m2. described in Watson et al. (1986). A detailed analysis of

the animation procedure is in Mulligan and Stone (1989)
and the procedure was previously used to generate mov-

Control for Size and Duration ing plaids (Stone, Watson, and Mulligan 1990).

Because the Gaussian-tapered spatial and temporalwin- The stimulus was a 512 pixel x 512 pixel, 8-bit/pixel
dowing links change in stimulus contrast to change in imagecreatedusing both locally developed programsand
perceivedstimulus size and duration,werepeatedsome of the Human-Information-Processing-LaboratoriesImage
the experiments in two subjects (including one naive sub- ProcessingSystem (HIPS) image-processing software
ject) using sharp circular spatial windows and sharp tern- package (Landy, Cohen, and Sperling 1984). In some
poral onset and offset. The results were qualitatively experiments (for all plaids and gratings with 20% and
unchanged. The contrast manipulations, not the concomi- 40% test contrasts), four two-dimensional (2-D) sinu-
tant small changes in size and duration, were responsible soidal gratings weregenerated (sine- and cosine-phase
for the speed-matching errors of these two subjects, components for each grating patch). These four images •
Therefore, it is unlikely that the effects described for the were multiplied by a 2-D Gaussian to provide windowing
other subjects and the other experiments are due to size or without sharp edges. The images were then halftoned
duration changes associated with our contrast using a modified error-diffusion method (Floyd and
manipulations. Steinberg 1975; Mulligan 1986). The four resulting bit-

mapped images were loaded into the four lower-order bit-

Data Analysis planes. A 3 pixel x 3 pixel white fixation cross was drawn
into a fifth bit-plane in the center of the image. The

The staircase method yielded typical psychometric curves remaining three bit-planes were blank. The image was
(fig. 1). We fit the data for each condition with a cumula- loaded into the framebuffer within a few seconds. Then,
tive Gaussian using a weighted least-squares procedure by varying the lookup table on a frame-by-frame basis (at
(Mulligan and MacLeod 1988) based on probit analysis 60 Hz), we modulated the contrast of the sine- and cosine-
(Finney 1971). For the speed-discrimination tasks, the phase components of each grating in temporal quadrature
inflection-point location represents a bias that we refer to so they appeared as a single drifting grating. Using this



method,we had complete controloverthe speed and con- Five out of the six subjects testedwith simultaneously
trastof both gratingswithouthaving to loadnew images presentedpairsof moving gratingpatches consistently
into the framebuffer.Furthermore,the initialspatialphase reportedthe lower-contrastgratingas moving more
of each gratingwas randomizedso that usingposition slowly. Figure2 plots the speedmatch for six subjectsas
cues to assess motionwould be difficult.A differentbase a functionof the contrastratioin decibels (dB) (20 lOgl0
image was necessaryforeach of thedifferentspatial- of the ratioof the standardcontrastto the test contrast)_"
frequencystimuli used. Forthe four ieflmostpoints,the test gratingwas always

70%andthestandardswere 10, 30, 50, and70%contrast,In some experiments(70% testcontrast),we used a modi-
fied procedurefor two reasons:at high contrast,halfton- starting fromthe left. Forthe three leftmostpoints (10, 30,

and50%contraststandards),the test neededto be sloweding at 1 bit/pixelproducedvisible noise andthe method
describedabovedid notallow the generationof a total by as much as45%to appearto driftat the same rateas

thestandard.The upwardarrowsindicatethat, for thecontrast(sumof both gratingcontrasts)above 71%.To
reducethe halftoningnoise and increasecontrastresolu- five subjectsthat showed the effect, even a 50%contrast

standardappearedto move moreslowly thanthe 70%tion, we halftonedeach grating image down to 2 bits/pixel
contrasttest.The perceivedspeeddifferencewas signifi-usingthe same error-diffusionalgorithm.To increasethe
cantfor foursubjects(p < 0.05 in one-tailedt-test). Thismaximumattainablecontrast,we constructedtwo half
resultsuggeststhat the effect occurs overthe entirerangeimages so that each could be as high as 71%.Two 4-bit
of contrasts.When the standardandtest were both 70%,half-images(256 pixel x 512 pixel) were generatedwith
all six subjectsmadeveridicalmatches.Forthe rightmosteachcontainingtwo 2-bithalftonedsine- andcosine-

phase componentsof a gratingpatch.The two upperand point,the test was 10%and the standardwas 70%con-
lower half-imageswere combined to generatea trast.Inthis case, the same five subjectsmatchedspeeds

when the testwas up to 51%faster thanthe standard.This512 pixel x 512 pixel image. A l-bit mask was put into
the fifth bit-planeof the upperhalf of the image to allow indicatesthatthe two symmetricmethodsfor measuring
separate animationof theupperandlower patches.A theeffect (slowing the higher contrastgratingor speeding
fixationcross was put in the sixth planeatthe centerof upthe lowercontrastgrating)yielded similarresults.
the image. Animationwas achieved by modifying the The effect on perceived speed appearsquasilinearin log
lookup tableon a frame-by-framebasis.The principles contrast.On average, thesix subjectsmismatchedspeed
behindthese modificationsaredescribedin detail in by 30%when matching70%and10% contrastgratings.
Mulliganand Stone (1989). Furthermore,the datain figure2 are fit remarkablywell

by simple straightlines forall subjects (meanslope =
1.5%bias/dB;mean intercept=98.6%;meancorrelation

Results coefficient =0.958). Even for theone subjectforwhom
When two driftinggrating patches arepresentedone the effect appearsweak or nonexistent(fig. 2(f)), the cot-
above the other, the lower-contrastgratingappearsto recttrend--positive slope--is still present).

move more slowly thanan otherwise identicalhigher- Speed discrimination(the ability to distinguishsmalldif-
contrastgratingmoving at thesame actualspeed. Figure1 ferencesin speed) is notsystematicallyaffectedby con-
plots typicalraw psychometric curvesfor one subject trastunderthe same conditionsthat producematching
underthree differentstimulusconditions.The center errors.Although the three curves in figure I areshifted
curve was generated in response to stimuluspresentations with respectto each other,they have similarslopes. The
where bothgratings were 70%contrast.The leftmost speed uncertaintiesare4.5, 7.0, and7.5% for the center,
curve was generatedwith a 70%contrasttest gratingand left, andrightcurves, respectively.Figure3 plots speed
a 10%standardgrating. The rightmostcurvewas gener- uncertaintyas a functionof contrastratiofor the same six
ated with a 10%testgrating anda 70%standardgrating, subjectsandthe same stimuli. Although for some subjects
in all three cases, the standardmovedat 2°/see. Whenthe therewas aslight tendencyfor higher uncertaintyat
contrastswere identical, the subject madeveridical higher contrastratios, there is no clearandsystematic
matches with the inflectionpointat 1.97°/see yieldinga relationshipbetweenthe precisionof the matchandcon-
speed matchof 98.5% or a speed errorof 1.5%.However, trastratio.Therefore,althoughsubjectsareconsistently
when the contrastof the test was higher (leftmostcurve), mismatchingspeedby up to 50%when the contrastsare
the inflectionpoint was at 1.71°/sec (85.5%speed match, different,they aredoingso with similarlevels of uncer-
14.5%error).Conversely, when the contrastof the test taintyregardlessof relativecontrast.
was lower (rightmostcurve), the inflectionpoint was at
2.34°/sec (117%speed match, 17%error). Speed-matchingerrorswere not affectedby changing the

absolutecontrastlevel. Three subjects (one naive) were
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tested with more than one test contrast. The lefthand pan- absolute contrast. For the third subject (fig. 6(c), JC), the
els of figure 4 plot results when 70, 40, and 20% contrast results are less clear. Saturation is suggested by the fact
test gratings were slowed to match lower contrast grat- that not one of the three subjects showed a significant dif-
ings. For all three subjects, the data nearly superimpose, ference in the perceived speed of a 70% test and a 50%
The right panels of figure 4 plot the results when 10% and standard when tested with orthogonal gratings (see down-
2.5% contrast test gratings were increased in speed to ward arrows in fig. 6), while four of six subjects showed a
match higher contrast gratings. It is clear that for all three significant difference when tested with parallel gratings
subjects the speed error data point for the 10% test is (fig. 2). Furthermore, for the two subjects tested with a
nearly identical to the corresponding points in the iefthand 20% contrast test and a 10% contrast standard under both
panels. However, at 2.5% test contrast, for all three sub- the parallel and orthogonal conditions (PT and LS), both
jects the speed errors appear larger at a given contrast made significant speed-matching errors in the parallel
ratio than those in the lefthand panels. These data indicate condition (p < 0.05; figs. 4(a) and 4(b)) but not in the
that, at least for test contrasts at or above 10%, the orthogonal condition (figs. 6(a) and 6(b)). Finally, at high
contrast-induced speed-matching error is a function of the contrast ratios, all three subjects showed a stronger effect
contrast ratio alone and is largely insensitive to differ- using the 20% contrast test. We conclude that the relative
ences in absolute contrast. At and below 2.5% test orientation of the gratings affects the contrast-induced
contrast, the effect may be larger, misperception of relative speed.

Speed-matching errors were not sensitive to small Stone, Watson, and Mulligan (1990) showed that the
changes in temporal and spatial frequencies. The same relative contrast of the grating components within a plaid
subjects as in figure 4 were tested at two different spatial/ affected its perceived direction of motion. They reasoned
temporal frequencies (fig. 5). For all three subjects, the that a contrast-induced misperception of component speed
effect is remarkably similar for a 1.5 cycle/degree (old) was responsible. If the error in perceived component
grating moving at 2*/see (3 Hz) and for a 3 e/d grating speed is fed into a mechanism that reconstructs plaid
moving at 2.75"/sec (8.25 Hz). These data show that a velocity from component information, plaid motion would
two-fold change in spatial frequency and a nearly three- be misperceived in a quantitatively predictable manner. If
fold change in temporal frequency have little effect on the the reconstruction is achieved using the intersection of
contrast-induced errors in perceivedrelative speed. Even perpendicular constraints rule (Fennema and Thompson
higher temporal frequencies were tested with two sub- 1979;Adelson and Movshon 1982), the error in perceived
jects. One subject (fig. 5(a)) continued toshow the plaid direction (A) is related to the perceived ratio of the
contrast-induced errors even at 10 Hz, while a second component speeds (R) by the following equation:
subject (fig. 5(b)) could not perform the task above
8.25 Hz. Finally, two subjects were tested at 8.25 Hz at
two different test contrasts (35% and 70%). As with the [ R - 1 0\

data at the lower temporal frequency (fig. 4), the effect A - arctan_._--_cotan 2) (1)
was nearly identical at the two absolute contrast levels.
Therefore, at least over the range tested, spatial and
temporal frequency as well as absolute speed has little with 0 being the angle between the directions of motion
effect on the contrast-induced misperception of relative of the two components.

speed. We predicted the effect of contrast on the perceived diree-
The effect of contrast on perceived speed is sensitive to tion of a moving plaid from contrast-induced biases in
the relative orientation of the gratings. Figure 6 plots the grating speed in two subjects. The predicted direction
results of the three subjects (including one naive) who error was generated using equation (1), the known 0, and
were tested in conditions where the upper and lower grat- the measured R in the same subjects. Figure 7 shows the
ings were orthogonal. The effect of contrast on perceived actual and predicted responses. Although the subjects per-
relative speed appears different from when the gratings formed differently, the actual performance for both of
were parallel (figs. 2 and 4). The effect showed greater them in the plaid-direction task (squares) is well predicted
intersubject variability, evidence of saturation, and depen- by equation (1), using their own grating speed-matching
dence on absolute contrast. For one subject (fig. 6(a), PT), data (dashed line).
the lower contrast gratings still appear slower although the

Individual subjects showed distinct differences in their
effect'was greater at lower absolute contrast. For a second performance when tested with non-parallel gratings.
subject (fig. 6(b), IS), the effect is gone (compare open Specifically, the two subjects tested with plaids showed
squares in figs. 4(b) and 6(b)) and speed matches are significant differences in their speed matching when
essentially veridical except at high contrast ratios and low
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presentedwith orthogonalgratings.SubjectPTstill contrastlevel, except possibly at very low contrasts,with
showed a significantcontrast-inducedmisperceptionof incompletesaturationat 50%.

relativespeed (fig. 6(a)), while subjectLS did not Contrasteffects on perceivedspeed have been docu-(fig. 6(b)). The same dichotomywas found in theirper-
ceptionof moving plaids.SubjectPTshowed a largeerror mentedpreviouslyby Thompson(1982), but his study
in the perceptionof plaiddirection(fig. 7(a)) while sub- was differentin two ways: he only examinedcontrasts.at

andbelow 17.8%andhe used themethod of adjustment
ject LS did not(fig. 7(b)). The variabilityin grating-speed andmagnitudeestimation.Thompsonfound that lowerand plaid-directionperceptionbetweensubjectswas con-

contrastgratingsappearto move moreslowly only atsistent for the two subjectstestedandthe limitedcondi-
tions tested. This consistencysupportsthe idea that temporalfrequenciesbelow 8 Hz. He reportedthat the

effect becomes smallerwith increasingtemporalfre-contrast-inducedmisperceptioninplaid directionis
merely a manifestationof a contrast-inducedmispercep- quencyandeven reversesat temporalfrequenciesabove

8 Hz. However,we foundno evidence of this. Infact, for
tion of component speed, all three subjectsexaminedat multipletemporalfrequen-
The perceptionof relativespeed is affectedby the tempo- cies, the effect was still robustwith lower contrastgrat-
ralpresentationof the stimuli to be matched.Figure8 ings appearingslowerat 8.25 Hz. We didfind thatthe
shows thespeed-matchingdatafor threesubjects taskbecamevery difficultfor one subjectandimpossible
(includingone naive) when the gratingsto be matchedare foranotherat temporal frequenciesat or above 10 Hz.
presentedsimultaneously(open squares)or when two This suggeststhat,at high temporal frequencies,subjects
pairsof gratings,presentedsequentially500 ms apart,are do not have aconsistentperceptof speed. The apparent
matched(solid squares).All stimulusintervals,in both reversalfoundpreviouslyis thereforeprobablyan artifact
conditions,containpairsof gratingpatcheswith the same of the experimentalmethodwith subjectsmakingspeed
perifovealspatialarrangement(above andbelow fixation), matchesbased on some othercriterion.Withourtwo-
Inthe simultaneouscondition, thespeed matchwas made alternativeforced-choicestaircasingprocedure,we report
betweenthe two patches in thesame single stimulus the point of subjectiveequalityonly if it is locatedon a
interval(as was done in all speed-matchingexperiments clearpsychometriccurvewith measuredprecision.The
describedabove). In the sequentialcondition,bothgrating methodsof adjustmentandmagnitudeestimationgenerate
patcheswithin a single interval moved at thesame speed apparentmatches,regardlessof whetherthe underlying
andthespeed matchwas made betweenthe two intervals, matchingperformanceis well behaved(i.e., is a sigmoidal
Forall three subjects, thecontrast-inducedmisperception functionof testspeed).
of relativespeed was less severe in the sequentialcondi-

The factthat speedperceptionis dependenton contrasttion. Subject LS actuallymadeveridicalmatchesunder
the sequentialcondition(figs. 8(b) and8(e)). Furthermore, suggeststhat speeddiscriminationshouldbe degradedby

randomlargefluctuationsin contrast.Any changes insubjectsPT andJL showed largereductionsin their
contrast-inducederrors when the stimuliwere presented contrastwouldbe perceivedas perturbationsin speed and
sequentially.Therefore,the temporalpresentationof two would thereforeaddto the observed uncertainty.How-
gratingpatchesaffectedtheir perceivedrelativespeed ever,McKee,Silverman,andNakayama(1986) showed
with gratings presentedseparately in time being more that randomizationof contrastdid notadversely affect
veridicallymatched, speed discrimination.This apparentdiscrepancywith our

presentresultscan be resolved by ourfinding that the
temporalpresentationof the stimulito be comparedis

Discussion important.At a fixed interstimulusinterval (ISI)of
500 ms, subjectsshowed eithera reducedor non-existent
effect of contraston perceived relativespeed. McKee,

Contrast.Induced Misperception of Grating Speed Silverman,and Nakayama(1986) used the methodof
in this study, we have shown that when two horizontal single stimuli that,like oursequentialcondition, presented
gratings moving upwardat the same speed within adjacent stimulione ata time. Their experimentswere self-paced,
stationarywindows arepresentedsimultaneously,the so itseems reasonableto assume that the ISI undersuch

conditionsexceeded 500 ms; therefore,given ourresults,lower-contrastgratingappearsto move moreslowly by up
to 50%. This effect is evidentover a wide range of con- little or no effect wouldbe expected. Anotherpossible
trasts(2.5 - 50%) and is notaccompaniedby any system- explanationfor the discrepancyis that McKee andcol-
atic changes in uncertainty.The effect is a functionof leagues used foveal presentationwhile we used perifoveal
contrastratioaloneand is independentof the absolute presentation.
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The magnitudeof the differencebetweenour simultane- A strikingdifferencebetween the previousplaid and our
ous and sequential conditions varied for each subject, in present grating results is that Stone, Watson, and Mulligan
fact, one subject actually made veridical matches when (1990) documented contrast induced misperceptions in
stimuli were presented sequentially.Given the resultsof plaid directiononly at low contrast, but thecontrast
McKce, Silverman, and Nakayama (1986), itwould be induced mismatches in grating speed shown hereoccur
interestingto know whether, atsufficiently long ISis, all over, potentially,the entire rangeof contrasts. Thompson
subjectswould have made veridical matches.Further (1982) exploredperceivedgratingspeedonly at the low
studies are needed to elucidate the time courseof the end of the contrastscale so Stone, Watson,and Mulligan
putativewashingout of the contrast-inducedspeed (1990) did not identifythis conflict. However, this puz-
matchingerrors, zling discrepancycanbe resolved by notingthatthe satu-

The spatialarrangementof oursequentialstimulus(two rationapparentin plaid-directionjudgments occurswith
patches moving at same speed) was unusualin orderto nonparallelgratingcomponentswhile the lackof satura-

tion apparentforgrating-speedmatchingoccurs withmatchthe exact spatialarrangementof thesimultaneous
parallelgratings. In fact, when subjectswere asked tostimulus.Unfortunately,subjectscould have paidatten-
matchnonparallelgratings,theirperformanceshowedtion to or even looked at (although told to fixate on the

centercross) one of the patchesin a given intervalsince signs of contrastsaturationsufficient to explain theplaid-
directionresults forbothsubjectstested despitethecon-its motioncontainedall the necessaryinformationto make
siderable differencesbetweenthe two subjects.the matchwith the second interval. However,the results

in figure 7 suggest that the simultaneous-sequentialdif- The intersubjectvariabilityprovidesfurtherevidence for
ference is not due to foveal versusperifovealviewing the two-stagehypothesis (Adelson andMovshon 1982)
because in this (fig. 7) anda previousstudy(Stone, becausethe plaidandgrating paradigms yield consistent
Watson,and Mulligan1990) errorsin perceivedplaid resultsthroughoutsubjects.The subjectwho speed-
directionwere observed when the componentshad differ- matchedorthogonalgratingsveridicallyshowed little or
ent contrast---evenwith foveal viewing. To resolvethis no plaid-directionerrorforplaidsconsisting of orthogonal
issue, a systematicstudy of the effect of eccentricityon gratings.The subjectwho showed a significantmisper-
contrast-inducedspeedmisperceptionwill be necessary, ceptionof relativespeedof orthogonalgratingsalso mis-

perceivedplaiddirection.Why there shouldbe such inter-
Plaid Motion subjectvariabilityis unclear.However, the variabilityin

orientationeffect on the contrast-inducedgrating-speed
Ina previous study,Stone, Watson, andMulligan(1990) misperceptionmay underlietheconsiderableintersubject
showed thatwhen a moving plaidconsistsof components variabilityin the orientationeffect on the contrast-induced
with differentcontrasts,itsdirectionis misperceivedwith plaid-directionmisperceptionshown previously(Stone,
a bias in the motion directionof the higher contrastgrat- Watson,andMulligan 1990).
ing.They suggested that this bias was due to a reduction

Because the effect of relativeorientationon plaid andin perceivedspeed of the lowercontrastcomponent. In
gratingperceptionis so variable,furtherstudieswill beourstudy,we explicitly testedthis by measuringper-

ceived relativecomponentspeed andplaid directionin the requiredforquantitativeanalysis. Onepossible explana-
tion for the variabilityin speed-matchingof orthogonalsame subjects undersimilarconditions.These results,and

a similarrecent finding by Kooi (1990), suggest thatboth gratingsis that,becausewe used circularlysymmetric
the contrastinducedplaid directionandgrating-speed aperturesin the orthogonalcondition,the stimuli were
misperceptionare manifestationsof the same underlying smallerandthereforeless salient thanin the parallelcon-
mechanism. Adelson and Movshon(1982) hypothesized ditions.Furthermore,the smallersize could have con-
that plaid motionis determinedusinga two-stage mecha- tributedto thechange in the contrasteffect fororthogonal
nism. First, the plaid is decomposed into the motionof the gratings.We believe size is unlikely to have beenentirely
individualcomponents.Second, plaid velocity is recon- responsiblebecauseorientationdependenceof contrast
structedusingthe intersectionsof constraintsrule effects on plaid-directionperceptionwas seen here (fig. 7)

andin a previousstudy(Stone, Watson,and Mulligan
(FennemaandThompson 1979). The datapresentedin 1990) despiteusingstimulithat were largerthanthosefigure 7 providedirectevidence for the hypothesis pro-
posed by Stone, Watson, and Mulligan(1990) that the usedto documentthestrongcontrasteffect on thespeed
contrast-inducedmisperceptionof componentmotionis matchingof parallelgratings(fig. 2).
fed throughthe intersectionof constraintsruleto yield the Despite thesmallersize of the grating stimuli andthe dif-
misperceptionin plaid direction, ferentspatialarrangementfor the plaids andgratings, our

predictionsof plaid-directionerrorsaresurprisingly
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accurate. For grating-speedperception,the gratingsmust. within visual cortex (Maunsell and Newsome 1987) sug-
be nonoverlappingand, therefore,perifovealto be gests thatspeed maybe inferredfromother measures.The
symmetric.For plaid-directionperception,the gratings issue of the primarynatureof speed perceptionremains
mustbe overlapping(and presentedfoveally for unresolved.
convenience). Because it is notpossibleto designan

A secondrelatedissue is whetheror nothumansperceiveexperimentwhere the spatialarrangementsare identical
speedveridically.The concept that speedis veridicallyandbecausethis comparativeapproachmerelyprovidesa

quantitativecorrelationbetweentwo phenomenaandcan perceivedwas supported by the resultsof McKee and
neverprovidea causal link, a morepreciseexamination others(1981, 1986) who showed that randomperturba-
was unwarranted, tions of duration,distancetraveled,andspatialandtempo-

ral frequenciesdo not have a significanteffect on speed
A numberof otherstudies has recently foundthat vari- discrimination.They did, however,show a small effect of
ables thataffect grating-speed perceptionalso affect spatialfrequencyon perceivedspeedwith higher spatial
plaid-directionperceptionin a mannerconsistentwith the frequenciesperceivedas faster.FerreraandWilson (1990)
two-stage hypothesis (Adelsonand Movshon 1982). have also foundthis, although theireffect was much
Using an adaptinggratingto reducethe apparentspeedof larger.Smithand Edgar(1990), however, foundthecon-
a single component(DerringtonandSuero1991) or using verse. This apparentdiscrepancycanbe resolved by not-
a plaid consistingof gratings of differentspatialfrequen- ing that when two gratingswere presentedsimuitane-
cies (Kooi 1990; Smith andEdgar1991) also yields ously, the lowerspatialfrequencygratingappearsslower
directionalerrorsconsistentwith a component-driven (SmithandEdgar 1990) and, when stimuliarepresented
analysis.Although no actualcausal link has beenestab- sequentially,the higherspatial frequencygratingsappear
lished, these results, togetherwith speedanddirection faster(FerreraandWilson 1990; McKee, Silverman,and
discriminationstudies(Welch 1989; Stone 1988, 1989, Nakayama1986; Dieneretal. 1976; CampbellandMaffei
1990), andthe results presentedhere, show that in awide 1981). The grating-speedresultsareconsistent with the
numberof circumstancesplaid-motionperceptionis con- finding thatthe perceiveddirectionof moving plaids
sistentwith a component-drivenmechanismusingthe composed of componentsof differentspatialfrequencyis
intersectionsof constraints ruleto reconstructpattern biased in the directionof the lowerspatialfrequency
(plaid) motionfromcomponent motion. However,some component(Kooi 1990; SmithandEdgar1991). These
studies have recently foundthat,for some plaid anglecon- resultscomplementthose presentedhere andprovidea
figurations, plaid motionis notconsistentwith a two- convincingensembleof datathatdemonstratesthat speed
stage component-drivenmodel, leadingto the suggestion is notveridicallyperceivedin a wide set of situations.
thatother mechanisms may also be atwork (Ferreraand Furthermore,they provideadditionalevidence that simul-
Wilson 1987, 1990; Stone 1988; DerringtonandBadcock taneouslyandsequentiallypresentedmoving stimuli are
1990). processeddifferently,although a foveal versus perifoveal

differencecannotbe ruledout.

Speed Perception

The questionof whetherhumansperceive speeddirectly Speed Coding within Visual Cortex
or whetherspeed is derived fromothersources has been Fromthe physiology andanatomyof monkeyvisual cor-
addressedin a numberof studies (Lappinet al. 1975; rex,it appearsthat directionandspeed informationare
McKee 1981; Orban,de Wolf, andMaes 1984).They representedin fundamentallydifferentways. Direction
proposedthat perceived speed is unlikelyto be derived informationappears to be coded within a place map in
fromdistanceor durationperceptionbecausespeed dis- which thereis a systematicrepresentationof each possible
criminationis betterthan distanceor durationdiscrimina- directionof motionin an orderlyarrayof cortical columns
tion. However, there is evidence to suggest that size and within MT(AIbright,Desimone, andGross 1984).Pre-
distancetraveled does affect perceivedspeed (Brown sumably,perceiveddirectionof motionis extractedby
1961; Katzet al. 1990). McKee, Silverman, and determiningwhich directioncolumn is the most active. A
Nakayama(1986) used the same discriminationargument recentstudy has, in fact, shown that localizedelectrical
to suggest that speed perceptionis not derivedfromtern- stimulation,presumablywithin a single directioncolumn,
poralfrequency.This latterresultis, however, unconvinc- biases directionjudgmentsin thedirectionof thecolumn
ing because one of the two subjectsshowed an equal (Salzman,Britten,andNewsome 1990). Althoughcon-
abilityto discriminatesmall differences in eitherspeed or trastaffects the absolutelevel of neuronalactivity in both
temporalfrequency.Furthermore,the lackof physiologi- striatecortex andMT neurons(Sclar,Maunsell,and
cal evidence fora clear representationof speed anywhere Lennie1990; AlbrechtandHamilton1982), thespatial



distributionof activity is most likely robustto the contrast contrast-inclependentmeasureof speed, motionenergy
level.1Nakayamaand Silverman (1985)foundthat, mustfirst be divided (normalized)by anotherenergy sig-
indeed, directiondiscrimination, as measuredby the mini- nal with the same contrastsensitivity. Specifically, one
mum motionnecessary to discriminate direction,was can take the difference between the outputs of rightward
unaffected by increases in contrast above about 3%. The and leftward motion energy sensors and divide that by the
ability to determine the direction of motion is therefore stationary energy to yield a true speed signal (Adelson-
thought to saturate at very low contrast, and Bergen 1986). However, the critical issue remains

The coding of speedinformation is poorly understoodand what signal is actuallyused as the stationary energy.
is likely to be different. Directionally selective cortical A potential neuronal implementation would be to normal-
neurons are tuned for speed but, unlike direction ize the output of striate cortical complex cells, postulated
(AIbright, Desimone, and Gross 1984), orientation (Hubel to encode motion energy (Emerson, Bergen, and Adeison
and Wiesel 1968; Hubel, Wiesel, and Stryker 1978), ocu- 1992), with an average.contrast signal constructed by
lar dominance (Hubel and Wiesel 1968; Hubel and Wiesel pooling the output of all complex cells over a range of
1974; Wiesel, Hubel, and Lam 1974; Tootell et al. 1988a), orientation and spatial frequencies and over a wide spatial
or even spatial frequency (Tootell et al. 1988b), there is area (Heeger 1991). If the area over which the pooling is
no apparent spatial organization for speed tuning, done is large enough to encompass both patches of our
Therefore, how speed is coded remains an open question, stimuli while the motion energy associated with the patch
although speed cannot be coded in the firing rate of indi- is detected over a smaller spatial extent, then the signal
vidual neurons (no such cells have been found in the detected by the higher contrast grating would be normal-
visual cortex) nor by a place code. One possibility is that ized by an inappropriately low average contrast.
speed is coded in the firing rate of a set of neurons. Conversely, the motion energy generated by the lower
However, firing rate is very sensitive to contrast in both contrast grating would be normalized by an inappropri-
striatecortex and MT (Albrechtand Hamilton 1982; ately high average contrast.Thus, a contrast-normalized
Solar, Maunsell, and Lennie 1990).This problem could be motion-energy scheme can qualitatively explain the
remedied by taking ratios of the firing rates of different observed contrast-induced misperception of relative
neurons. If the contrast sensitivities were equal, any con- speed.
trast effect would be cancelled. A ratio scheme of this

type has been proposed for velocity coding by Harris This scheme can be extended to explain our additional
findings. If the contrast is normalized by a signal pooled

(1980) and it gains some plausibility from psychophysical
only over similar orientations/directions, then two orthog-

evidence suggesting just two populations of speed-tuned onal gratings would be normalized largely independently.
cells, one preferring slow rates of movement (below 4 Hz)
and the other faster rates (Watson and Robson 1981; This could explain why the contrast effect is dependent on
Thompson 1983). the relative orientations/directions of the gratings with a

tendency to be weaker for orthogonal gratings. The nor-
The problem of contrast and speed coding has been of realization in the orthogonal ease might be more correct
particular concern to theoreticians who have postulated since the two different energy signals from the two
that the visual system uses linear oriented spatio-temporal patches would only partially interfere with each others'
filters to extract motion information because such filters normalization. Further experiments examining the entire
are sensitive to changes in contrast (Watson and Ahumada range of relative orientations are needed to determine the
1983). One solution to this problem would be to use the role of orientation in this putative normalization process.
temporal frequency of the filter's output modulation, a
measure that is independent of contrast (Watson and The normalization scheme can also explain the fact that
Ahumada 1985). However, this assumes that temporal the perceived relative speed of simultaneously presented

gratings is more contrast dependent than that of two
frequency is veridically encoded independent of contrast, sequentially presentedgratings: the normalization takes
Another approach would be to use motion energy
(Adelson and Bergen 1985; Heeger 1987), a phase- place over a finite time. Two gratings presented sequen-
independent measure derived from the output of the linear tially would be normalized separately. The normalization

in the sequential ease would be more correct since the two
spatio-temporal filters, but motion energy is proportional different energy signals from the two intervals would only
to the square of contrast.Therefore, in orderto yield a partially interferewith each others normalization. Further

experiments examining a wider range of ISis are needed
lThis is onlytree abovesomeminimalcontrastlevel to determine the temporal extent of the putative normal-

necessaryto recruitmostneurons.InMT,most neuronsare ization process.
firingat half-maximumby about10%(Selar,Maunsell,and
Lennie1990).



A thirdexperiment that couldbe usedto examine the Edgar1990, 1991; Ferreraand Wilson 1991). Further-
normalizationhypothesis would beto determinewhether more,these contrasteffects may manifest themselves
the distancebetween the gratingpatchesisimportant.The duringreal worldnavigationsituations such as flyingor
normalizationhypothesis predictsthat speed-matching drivingthroughsmoke, fog, or shadows, or over low-
should become more veridical with increaseddistance, contrastterrainlike wateror sand, or if pilots use night-
Experimentsexamining a range of interpatchdistancesare vision equipmentthat produces low-contrastimagery. If
needed to determineth? spatial extentof theputative contrastcauses imagespeed to be misperceived,then for-
normalizationprocess, wardspeedmay be misperceived.In addition,because

veridicalextraction of self-motion informationgenerallyA morespecific model of contrastnormalizationmustbe
requiresaccurateimage-speedinformation,headingdirec-

developed to predictquantitativelyourresults,particularly tionandenvironmentallayout maybe misjudged.Our
the finding thatperceivedrelativespeed is a quasilincar
functionof log contrastratio.However,there is other results, therefore,putnew constraintson models of human
empiricalevidence for this quantitativerelationship motionperception,provideadditionalinsight into how the
betweenspeed andcontrast.Using an induced-motion cortex processesvisualmotion, will help in the develop-
paradigm,RaymondandDarcangelo(1990) recently meritof more realisticmodelsof humanperformancein
founda similarinteractionbetweenperceived speedand visually-guidedtasks, andcan ultimatelyprovide impor-
contrast.They moved a variable-contrastsurroundgrating tantinformationto those designingvisual display systems
to impartapparentmotion in the oppositedirectionto a to be usedduringnavigationor in flight simulators.
stationarycentergrating.The inducedspeed was a quasi-
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Figure 7. Rawpsychometric curves for one subject at three contrast ratios. The data are plotted as the
percent of trials in which the test grating wasperceived faster than a 2°/sec standard as a function of the
actual speed of the test. All gratings were 7.5 c/d unlessotherwise stated. Thesolid lines are integrals of
Gaussiansfitted usingprobit analysis,a weighted least-squaremethod that weighseachpoint according to
the number of trials at that test speed and according to the binomialdistribution of the underlying
probability.
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Figure 3. Speeddiscrimination for the samesix subjects andsame conditions as in figure 2. Speed
uncertainty wasdefined as the ratio of the standard deviation of the fitted Gaussianto the standard speed
divided by _/2 because the performance varianceis assumed to be the sum of the two equal variances
produced by uncertainty in both the test and standard speeds. The mean uncertainty is plotted as a function
of the contrast ratio. Theerror bars are standard deviations over three sessions.
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Figure 4. Contrast-induced speed errors are independent of absolute contrast. Meanspeed error over three
sessionsis plotted as a function of the contrast ratio for high contrast tests matched to lower contrast
standards (abc) and for low contrast tests matched to higher contrast standards (def) for three subjects.
For clarity, standard deviations are only plotted for the 2.5_ and?0% contrast test conditions. The dashed
line represents veridical matching. The 70_ and 10_ contrast test data are replotted from figure 2. The
40_ test data were generated by matching to 5, 10, 20 and 30_ contrast standards. The 20_ and 2.5_
contrast test data weregenerated by matching to 2.5, 5, 10, and20_ contrast standards.
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Figure 5. Contrast-induced speed errors are Figure 6. Contrast-inducedspeed errors for
insensitive to changes in temporal/spatial orthogonal gratings. Meanspeed error is plotted as
frequency. Meanspeed error over three sessionsis a function of the contrast ratio for two different
plotted as a function of the contrast ratio for test contrasts using orthogonal gratings for three
different spatial/temporal frequenciesand test subjects. The error bars are standard deviations
contrasts for three subjects. For clarity, standard over three sessions.The dashed line represents
deviations are only plotted for the 1.5 c/d vefidical matching.
condition. The dashed line represents vefidical
matching.
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Figure 7. Contrast-induced grating-speed errors explaincontrast-induced plaid-direction errors. Mean
plaid-direction errors (squares) are plotted as a function of contrast ratio at two different relative
orientations for two subjects. Error bars are meanuncertainty (standard deviation of the fitted Gaussian)
over three sessions. The dashed lines represent simulatedplaid-direction errors using equation (1) and
measuredgrating-speed errors in the same subjects.
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Figure 8. Contrast-induced speed errorsare weakerwith sequential presentation. Meanspeed errors are
plotted as a function of contrast ratio using both simultaneous (open square) and sequential (solid square)
presentations. The error bars are standard deviations over three sessionsand, for clarity, are only
presented for the simultaneous condition. The dashedline represents vefidical matching. The lefthand panels
show the data generated by slowing a 2096contrast test grating to match 20, 10, 5, and 2.596contrast
standards. The righthand panels show the data generated by speeding up a 2.596contrast test grating to
match 20, I0, 5, and 2.596contrast standards.
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